

**Original paper** 

# A Review on Application of Glass Fiber-Reinforced Polymer as a Strengthening Material for Unreinforced Masonry Walls

Mohammad Norouzi Shavir 1\*, Mohammadreza Moradi 2, Majid Alipoor 3, Reza Sakizadeh 4, Peyman Beiranvand 5

<sup>1</sup>School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran. <sup>2,4,5</sup> School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran. <sup>3</sup>Department of Civil Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran.

# ARTICLE INFO

Article history: Received 17 July 2024 Accepted 10 September 2024

Keywords: Unreinforced Masonry Wall GFRP Theoretical Equations Cyclic Loading Strengthening Materials

# ABSTRACT

Since the Unreinforced masonry structures are prone to dynamic loadings induced by earthquakes, a thorough comprehension of the behavior of these structures will help to improve their seismic performance. On the other hand, seismic performance improvement of unreinforced masonry walls was a very vast field of investigation. The primary aim of this paper is to study the comparison between the response of the unreinforced and strengthened model, Furthermore, the failure debonding mechanisms of strengthened shear wall models with glass fiber reinforced polymer (GFRP) are discussed. A systematic review of the literature was conducted on the topic with a major focus on the arrangement of the observation used GFRP materials for strengthening techniques, theoretical/analytical prognostication equations formulating the experimental investigations in the research, determination of the progress in the research areas, and identifying the gap in the literature. Eventually, a systematic review of literature will assist in identifying the gap in the knowledge about the Masonry walls reinforced with GFRP and determine the most critical design parameters affecting the structural performance of these types of structures.



DOI: https://doi.org/10.21859/jces.8149

### 1. Introduction

Natural disasters e.g., earthquakes are the most serious risk causing tremendous loss of life and property. In general, casualties of human life in earthquakes occur due to the collapse of buildings and non-engineered dwellings. Singlestory houses are almost always built without the supervision of an experienced engineer and are more likely to be susceptible and suffer damage during a seismic event. Generally, these types of houses are usually adequate for withstanding the gravity loads and make almost acceptable performance under compression tension. But on the antithesis, these types of structures are grossly inadequate to withstand the lateral inertia loads imposed by earthquakes. According to [1] about 75% of the fatalities attributed to earthquakes are caused by the collapse of buildings

and the greatest proportion is from the collapse of masonry buildings. On the other hand, Masonry structures are widespread in many regions of the world and masonry units of construction still remain as a major building material in many places, especially in rural areas. Approximately 60% of people in the whole world are living in masonry buildings that are made by piling up bricks, sun-dried mud bricks (Also known as adobe), stone and concrete blocks. [2] A large percentage of these buildings are currently associated with low economic resources. Furthermore, a large portion of the existing earth constructions is now located in regions where seismic hazards cannot be neglected. Therefore, structural strengthening methods were carried out and different techniques are often necessary to allow unreinforced masonry buildings to remain in the future. Structural

\*Corresponding author Email: peyman51471366@gmail.com

Please cite this article as: Norouzi Shavir, M., Moradi, M.R., Alipoor, M., Sakizadeh, R., and Beiranvand, P. (2024). A Review on Application of Glass Fiber-Reinforced Polymer as a Strengthening Material for Unreinforced Masonry Walls. *Journal of Civil Engineering and Structures*, 8(1), pp.27-37

#### ©2024 JCES All rights reserved

retrofitting of Masonry structures are developed to increase structural capacity or to control structural damage of unreinforced masonry walls by affecting failure mechanisms and preventing a cracking pattern. [3] When a masonry structure is exposed to loading, load-bearing walls are mainly subjected to two types of possible failure mechanisms such as in-plane shear and out-of-plane bending [4, 5]. According to Iuorio et al. [6] In general, the out-of-plane failure of URM walls is divided by either one-way or twoway bending of the walls. The failure mechanism of masonry buildings can be local or global and can result in a partial or total collapse of the wall. One solution to overcome the out-of-plane failure is to be restrained by providing externally strengthening elements such as proper wall diaphragm connection or I-shaped flanges that supply adequate stiffness [7]. The principal in-plane mechanisms are generally characterized by the following failure modes: 1) shear failure, 2) sliding failure, 3) rocking failure, and 4) toe crushing failure. Among them and with an aspect ratio lower than 1, shear and sliding failure are the most common and general modes of failure observed in URM buildings [8]. The rocking failure is the most ductile failure and the least harmful; sliding shear failure is the least frequent, whereas the diagonal shear failure is the worst type of wall failure since it is very brittle and sudden. [9] Fiber-reinforced polymer (FRP) has become an extensively used popular material to strengthen masonry walls and structures in the past few decades. High strength-to-weight ratio, high initial stiffness, linear elastic behavior, and convenience in the application have made it a material of good choice for the seismic retrofitting and strengthening of the masonry structure. The glass fiber-reinforced polymer (GFRP) sheets were used in tremendous investigations to reinforce masonry walls, it offers significant advantages since the fibers can be externally bonded to the surface without affecting the aesthetics of the structure, Also, it could improve the strength and ductility of the structure. This paper describes an experimental investigation and theoretical study of in-plane shear strengthening using glass-fiber-reinforced polymer (GFRP) as a strengthening material. Using GFRP sheets, bars, and GFRP as a polymer in fiber-reinforced concrete for partially grouting the surface of masonry walls is a typical suggestion of authors. The strengthening could be applied on Only one side or both sides of the masonry wall, each approach has its own benefits and defects, e.g., single-sided strengthening could be more economical and allows the façade of a building to be left untouched.

#### 2. Methodology

Many different strategies for the prediction of the behavior of masonry walls to calculate strength were offered by the authors. Also, regarding retrofitting methods, different techniques to strengthen the new or rehabilitate the existing masonry buildings are presented by scholars. To accomplish the methodical review, relevant studies were identified by searching electronic databases (including Science Direct, Scopus, Web of Knowledge, and Civil Engineering database (ASCE)) for published literature up to May 1st, 2022. More than 50 works were filtered, studied, and classified in this category. In addition, the reference lists of relevant studies were double-checked for reports of other potentially relevant studies. scholar's Studies were eligible if they (1) proposed an equation to anticipate the behavior of URM or retrofitted wall (2) the analytical equation performed in another study and other scholars used this as a reference (3) Regarding strengthening method, assessment of strengthening solutions by performing material and mechanical characterization tests; (4) verified by information regarding the strengthening materials and methodology is provided and (5) were published in English. In fact, it was considered valuable to include these works due to the highly eligible and numerous acceptable information concerning this topic.

#### 3. Analytical Equations for In-Plane Loading

## 3.1. Single-sided diagonal strips

Capozucca and Magagnini (2020) [10] conducted an experimental investigation via analytical equations to evaluate the In-plane seismic behavior of the 1:3rd single-story historic solid clay brick wall, strengthened on one side, by diagonal GFRP strips. Both of the specimens were subjected to precompression to simulate actual loading conditions in masonry buildings and tested under cyclic lateral loading. (Fig.1)The first one strengthened after damage with EB GFRP strips - and then once again subjected to the same loading until failure; the Second one was strengthened with GFRP strips without damage and subjected to the same path of loading until failure. The specimens are shaped in double T-shaped sections. The choice of using double T shape sections was attributed to avoid bending cracking at the base of the wall model, consequently, the failure is initiated only due to shear.



Fig 1. Wall surface with application of the two-component primer (Capozucca and Magagnini [10]).

During the cyclic loading, the loss of strength of the FRP-masonry joint hybrid system can occur in various conditions, e.g., detachment of the composite material, along the surface of the wall material and the adhesive; at the contact between the thin layer of adhesive and the composite and finally, it can occur inside the same composite layer also known as an interlaminar failure.[11] Experimental investigations suggest that one of the failure modes of FRP reinforced masonry joints is delamination failure occurring at a plane located a few millimeters from the surface of the masonry. As known, the ultimate load of strengthening with EB GFRP strips depends strongly on the fracture energy, Gf, which can be evaluated by shear stress-slip laws. The authors proposed different equations to evaluate the fracture energy in unreinforced masonry walls. Due to the lack of generally accepted values for masonry components, missing material properties are calculated based on expressions used in concrete. Walraven and Van der Horst [12] proposed the equation for the tensile strength which was derived from the flexural strength:

$$f_t = f_f \frac{0.06h^{0.7}}{1+0.06h^{0.7}} \tag{1}$$

Where h is the height of the specimen tested in three-point bending. The compressive fracture energy is calculated according to the equation proposed by (Drougkas et al, 2015) [13]:

$$= f_c d \tag{2}$$

Where d = 1 mm. The tensile fracture energy in N/mm is calculated according to the equation proposed by (Drougkas et al., 2019) [14]:  $G_{\ell}^{c} = 0.073 f_{c}^{0.18}$  (3)

With the compressive strength  $f_c$  from cubic compression test and is  $inN/mm^2$ .

An analytical method to predict the bond capacity of Externally Bonded GFRP-strips on brick masonry walls, considering a simplified elastic model and also has been developed with the presumption that GFRP strips as the adherent material subjected to both axial and shear deformations. [15] The width, thickness, Young's modulus, and shear modulus of the intermediate layer are mentioned by  $b_m$ ,  $t_m$ ,  $E_m$ , and  $G_m$ , respectively; the adherent superficial layer with thickness t1 and the ideal intermediate element of thickness tm are supposed to be an elastic material. To obtain the maximum value of the interfacial fracture energy,  $G_f$ , i.e., the total external energy supply per unit of area required to create delamination along the GFRP strip-to brickwork masonry bonded joint:

$$G_f = \frac{t}{2b_1^2 E_1 t_1} \tag{4}$$

The value of load capacity, P, is the superficial glued layer of the GFRP strip, and  $b_1$ ,  $t_1$ , and  $E_1$  are respectively the widths, the thickness, and Young's modulus of the adherent superficial layer. Although masonry can carry out the main part of compression load for its greater thickness, also GFRP strip is subjected to a part of compression. Cappozucca [17] in another study assessed an investigation on unreinforced double-leaf masonry wall models built with historic solid clay bricks on a 1:3rd scale. The unreinforced models were tested under combined compression and

 $G_f^c$ 

shear loading. After damage they were strengthened with two types of external bonded composite materials - diagonal Glass-FRP strips and steel fiber reinforced cement grout (SRG) - and then once again subjected to the same loading until failure. Under compression by alternative horizontal force, strengthening with SRG strips has shown a weak behavior. A theoretical model which may be used to analyze the buckle response is described. Internal energy contributions due to bending of the ideal beam and to the response of springs for the displacement y(x) are as follows:



This compression leads to Delamination buckling becoming the damage of the strengthening glued to the masonry surface and causing a major failure mechanism. GFRP strip is assumed as an elastic beam embedded subjected to compressive forces at the ends. The strip may buckle under a system of loads, P, due to compressive forces and load reactions, q, of ideal springs with constant k. (Fig.2) According to the energy method following the Rayleigh's procedure, the constant k depends on the width bl of strips by the relation k=k0 · bl and the critical buckling load determined by energy method may be determined as it follows: [16]



Fig 3. Model to analyze the delamination buckling of GFRP strip (Capozucca and Magagnini (2020) [10]).

The primary impact of the strengthening method was the failure of the walls retrofitted with GFRP strips that occurred with the cracking of the masonry and the failure of the GFRP strips after the local loss of bond. Furthermore, the strengthening of the GFRP strips led to an increase in deformation energy due to wider load cycles. The strengthening of the GFRP equipped panels led to an increase in resistance, however, what is mainly observed is a strong increase in lateral deflection with an increase in ductility. Furthermore, failure of the GFRP reinforced panels occurred with cracking of the masonry and the resulting failure of the GFRP strips due to detachment. Most importantly, the retrofitting of the GFRP-equipped panels led to an increase in deformation energy due to wider load cycles. A local phenomenon of instability of the strengthening can cause brittle failure resulting from debonding mechanism. Consequently, Although GFRP causes an increase in resistance and reveals a major displacement capacity, Cappozuca [17] results focus attention on a need that the use of composite GFRP material generally does not satisfy the retrofitting method by itself.

# 4. Analytical Equations for Out-of-Plane Loading

#### 4.1. Brick masonry wallet reinforced by GFRP strips

Sistani nezhad and Kabir [47] carried out experimental study on behavior of masonry wallets strengthened by GFRP strips with different reinforcement ratio and configurations e.g., diagonal, grid and combination of grid and diagonal. (Fig. 4)



#### - Strain gauge location

# Fig 4. Configuration of strengthening and location of strain gauges (Sistani Nezhad and Kabir [47]).

The results were compared in the terms of laid carrying capacity, displacement, and energy absorption and failure mode. In total six double -wy the wallets with nominal dimension of  $880 \times 880$  mm were built and subjected to out-of plane vertical monotonic loading. In retrofitted masonry wallets, the out-of-plane loading in general caused shear and bending failure. In stark contrast, however, the unreinforced masonry wallet failure was due to spreading cracks through mortar joints on the tension side of the wallet. Longitudinal curvature formation caused an elevation of four corners. Due to the significant ductility by strengthening method considerable curvature is observed in strengthened specimens. Also, out-of-plane strength of retrofitted specimens was higher than the control wall. For the reference specimen at the elastic phase, the lateral load is proportional to the lateral deformation up to 0.73mm displacement. The ultimate load is reached to 11.68kN with 1.06mm out-of-plane deformation. The ultimate out-of-plane deformation at the collapsed state is obtained at 8.3mm. In contrast, the wallet strengthened by a layer of cement on both sides is considerably higher. The ultimate load and its corresponding displacement are measured as 25.67kN and 2.3mm, respectively. These values are 120% and 117% higher than that of the unreinforced wall, correspondingly. Also dissipates 130.9kNm energy that is 386.6% more than the control specimen. But due to the sharp dropping of carrying the load after the peak value, in general, post peak behavior of this specimen tends to be brittle and sudden collapse. The behavior of the wallet with reinforcement ratio (longitudinal FRP area to the cross-section area) of approximately 0.269%, is approximately linear up to 1.29mm displacement. Ultimate strength is about 43.5kN with the out-of-plane displacement of 2.56mm. In this case, the specimen' s out-of-plane strength is increased about 272% with a corresponding displacement of 141% more than the unreinforced specimen. Wall with the reinforcement ratio of 0.237%, carries a maximum load of 82kN with a corresponding midspan displacement of 7.49mm. The out-of-plane strength and corresponding displacements are 602% and 607% of the control wall, respectively. The overall failure is induced by detachments of GFRP strips and then the load is plunged and the crack propagation is extended through the masonry wall surface. The primary behavior wallet with reinforcement ratio of 0.168% at the load-deflection curve is linear up to the 20.5kN and 1.14mm displacement. It extended to the ultimate load 42.04kN with the corresponding displacement of 2.75mm. At this point, the failure considerably occurred by crushing of masonry in compression causing

decrease of carrying the load. The failure mechanism was due to the weak bond between adhesive and substrate delamination of strips. The ultimate capacity and the corresponding displacements are 260% and 159% as compared to the corresponding values in control specimens, respectively. A wall with reinforcement ratio of 0.158% is linear until the onset of micro cracks in the tension side of the wall before functioning of FRP action. This point belongs to the displacement of 1.04mm under a load of 20.14kN the ultimate load reaches to 51.26kN at 4.22mm out-of-plane displacement. In comparison to the  $4^{\rm th}$  retrofitted specimen to the reference wall the strength soars to 338% higher than unreinforced masonry wallet. Ductility is calculated by dividing ultimate deformation at 80% of load carrying capacity to yield deformation where the first reduction in stiffness occurs. In each retrofitted specimen by GFRP strips the improvement in the displacement ductility ratio is 55%, 53%, 41% and 40% of different patterns of GFRP reinforcements and reinforcement ratio. GFRPs strips that are applied partially on the masonry facades can considerably improve the ductility of force-displacement response and energy absorption under

monotonic loading. Furthermore, by applying partially GFRP strips on the tension side of masonry walls great improvement in out-of-plane strength is achieved. Ultimate bending moment and out-of-plane strength capacity of the masonry cross section is defined by considering three different failure modes; FRP debonding, FRP rupture and the compressive crushing of masonry. Since FRP debonding mode does not occur as the main failure mechanism, analytical equations are defined for the compressive crushing of masonry and FRP rupture. Therefore, the depth of compressive part can be determined.

## 5. Results

In this section, a comparison between the experimental results of different authors on the improvement of the seismic performance of unreinforced masonry walls with GFRP materials were provided. To have a better analogy, all studies with different conditions of dimension, geometry, loading procedures and different application technique of strengthening were reported and the results were compared.

| Table 1. Database of | f experimental | l programs | based on | GFRP | retrofitting technique. |
|----------------------|----------------|------------|----------|------|-------------------------|
|----------------------|----------------|------------|----------|------|-------------------------|

| Authors                                      | Type of<br>Masonry                     | Type of<br>Loading      | Length<br>(mm) | Height<br>(mm) | Retrofit method                         | Details of<br>strengthening<br>method | Contribution<br>of<br>Strengthening                                                                                                                                                                                                                                                                      | Failure mode                                                                                     |
|----------------------------------------------|----------------------------------------|-------------------------|----------------|----------------|-----------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Del Zoppo<br>et al. [25]                     | Tuff<br>bricks                         | Diagonal<br>Compression | 1200           | 1200           | GFRP Grid and<br>Cementitious<br>Matrix | Single side;<br>double side           | Increase in<br>shear<br>capacity,<br>single side:<br>42-85%;<br>Both side:<br>138-288%                                                                                                                                                                                                                   | Sudden failure<br>changes to<br>uniform<br>cracking and<br>ductile post-<br>peaking<br>behaviour |
| Capozucca<br>and<br>Magagnini<br>(2021) [23] | Clay brick                             | Cyclic shear<br>test    | 850            | 633            | GFRP Strips                             | Diagonal and<br>Horizontal            | Shear<br>capacity<br>increased by<br>50%                                                                                                                                                                                                                                                                 | GFRP<br>detachment                                                                               |
| Capozucca<br>and<br>Magagnini<br>(2020) [10] | Clay brick                             | Cyclic Shear<br>test    | 835            | 633            | GFRP Strips                             | Diagonal                              | Failure mode<br>occurs at F <sup>+</sup><br>:50 kN, F <sup>+</sup> :55<br>kN change to<br>F: 92.2 kN                                                                                                                                                                                                     | Detachment<br>and Buckling<br>of GFRP<br>strips                                                  |
| Cappozucea<br>[17]                           | Clay brick                             | Cyclic shear<br>test    | 840            | 633            | GFRP / SRG<br>strips                    | Diagonal                              | Ductility<br>increased, -<br>1.2 to -<br>3.7mm; 0.8 to<br>1.25mm<br>Load capacity;                                                                                                                                                                                                                       | Debonding of<br>GFRP strips<br>and buckling<br>of SRG                                            |
| Stratford et<br>al.[18]                      | Clay brick<br>and<br>concrete<br>block | Static shear<br>test    | 1200           | 1200           | GFRP sheet                              | Single-side<br>strengthening          | Clay: 115 to<br>190 kN (65%)<br>Concrete: 80 to<br>110 and 130 kN<br>(38 and 83%)                                                                                                                                                                                                                        | Debonding of<br>GFRP<br>Diagonal                                                                 |
| Yu et al.<br>[28]                            | Concrete<br>block                      | Diagonal<br>cyclic test | 1630           | 1630           | GFRP bars                               | Prestressed<br>NSM GFRP<br>bars       | Maximum<br>shear stress:<br>0.62 to 1.34<br>MPa<br>High stress<br>cement layer:<br>P: 120%                                                                                                                                                                                                               | cracks change<br>to combination<br>of shear friction<br>and shear<br>shiding                     |
| Sistani<br>Nezhad and<br>Kabir [47]          | Clay brick                             | Out-of-plane<br>loading | 880            | 880            | GFRP strips                             | Different<br>Reinforcement<br>Ratio   | $\begin{array}{l} \mathcal{S}_{max}: 117\% \\ \mathcal{S}_{max}: 117\% \\ \mathbf{0.269\%}: \\ \mathcal{P}: 272\% \\ \mathcal{S}_{max}: 141\% \\ \mathbf{0.237\%}: \\ \mathcal{P}: 602\% \\ \mathcal{S}_{max}: 607\% \\ \mathbf{0.168\%}: \\ \mathcal{P}: 260\% \\ \mathcal{S}_{max}: 500\% \end{array}$ | Crushing at<br>the<br>compressive<br>area and<br>rupture of<br>tensile GFRP                      |
| Gattesco                                     | Cobble                                 | Four points             | 1000           | 3000           | GFRP mesh                               | Both side<br>mortar coating           | ο <sub>max</sub> :159%<br>Bending<br>moment<br>capacity: 4-5                                                                                                                                                                                                                                             | Cracks in<br>middle third<br>of wall                                                             |

| and Boem<br>(2017) [48]             | stone                           | bending                     |          |      |                                     | with GFRP<br>mesh                                                              | times;<br>deflection: 25<br>times                                                                                      | caused GFRP<br>wire failure                                                             |
|-------------------------------------|---------------------------------|-----------------------------|----------|------|-------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Dong et al.<br>[49]                 | Clay brick                      | Four points<br>bending      | 235      | 870  | Glass textile                       | TRM with<br>addition of<br>PVA fibres to                                       | Peak loads<br>increased<br>12.6 times;<br>ductility                                                                    | In the<br>constant<br>moment<br>region bed<br>joint between                             |
|                                     |                                 | -                           |          |      |                                     | matrix                                                                         | factor: 2.66<br>times<br>Load                                                                                          | brick and<br>mortar<br>debonded<br>Due to GFRP                                          |
| Abdulsalam<br>et al. [50]           | Clay briek                      | Out-Of-<br>Plane<br>loading | 460      | 1420 | GFRP Sheet                          | Sheets<br>anchored                                                             | canying<br>capacity<br>increased by<br>100%                                                                            | anchor Spike<br>rupture of<br>GFRP sheet<br>occurred                                    |
|                                     |                                 |                             |          |      |                                     | Application of<br>GFRP<br>laminate                                             | Retrofitted<br>over plaster<br>increased                                                                               | Arching<br>mechanism                                                                    |
| Tumialan et<br>al. [52]             | Clay brick                      | Out-Of-<br>Plane<br>Loading | In- Situ |      | GFRP Laminate                       | directly to<br>masonry wall<br>compared to<br>without<br>removal of<br>placter | 17% in load<br>capacity;<br>without<br>plaster<br>increased by<br>40 %                                                 | due to<br>flexural<br>cracks                                                            |
|                                     | Stone                           |                             |          |      | GFRM, Steel                         | GFRP meh                                                                       | Shear<br>strength:<br>GFRM:                                                                                            | Diagonal<br>crack instead<br>of                                                         |
| Borri et al.<br>[40]                | masonry;<br>Pebble<br>masonry   | ; Cyclie<br>diagonal test   | 1200     | 1200 | mesh as a<br>Hybrid                 | jacketing and<br>mortar coating                                                | Stone: 17%<br>pebble: 40%<br>Hybrid:<br>Stone: 87%                                                                     | concentrating<br>in middle<br>widespread<br>on the                                      |
|                                     |                                 |                             |          |      |                                     |                                                                                | Pebble: 112%<br>Resistance<br>Solid brick and                                                                          | surface                                                                                 |
| Gattesco<br>and Boem<br>(2015) [41] | l-brick<br>2-Rubble<br>3-Cobble | Diagonal<br>Compression     | 1160     | 1160 | GFRP mesh and<br>Mortar coating     | Both side<br>mesh<br>jacketing and<br>mortar coating                           | 70 and 90%<br>Cobble stone<br>(strong mortar):<br>220% weak<br>mortar: 350%<br>Ductility: 1.7<br>to 8 times<br>Maximum | Linear<br>diagonal<br>cracks                                                            |
|                                     |                                 |                             |          |      |                                     | Single side;<br>both side                                                      | load on both<br>side; single<br>side and                                                                               | Single side:<br>out of plane<br>bending                                                 |
| Gattesco et<br>al. [42]             | Stone<br>masonry                | Lateral<br>Cyclic           | 1500     | 2000 | GFRP mesh<br>with mortar<br>coating | Hybrid one<br>side GFRP<br>and other<br>steel-strands                          | hybrid:<br>155kN to<br>216, 188 and<br>201 kN,<br>ductility:<br>11.9mm to<br>22.72, 14.08<br>and 24.08mm               | caused<br>failure, both<br>side and<br>hybrid<br>detachment<br>of reinforced<br>coating |
| Borri et al.<br>[43]                | Clay brick                      | Diagonal<br>cyclic          | 300      | 300  | GFRP grids                          | Grids inserted<br>to thermal<br>insulation<br>jacketing                        | Lad capacity<br>and stiffness<br>was 215.6 kN<br>and 4829<br>MPa (7 and<br>18.4 %<br>increase)                         | Diagonal<br>cracks along<br>the<br>compressed<br>diagonal axes                          |

| Mohammad Norouzi Shavir e | et al. / | JCES | (2024) |
|---------------------------|----------|------|--------|
|---------------------------|----------|------|--------|

| Mustafaraj<br>and Yardim<br>[45] | Clay brick                  | Diagonal<br>compression | 1200 | 1200 | GFRP mesh             | GFRP mesh<br>embedded<br>mortar<br>jacketing in<br>both side             | Shear<br>resistance<br>127%<br>ductility:<br>1100%<br>modulus of<br>rigidity:<br>650%<br>Dissipation                | Linear<br>diagonal<br>cracks with<br>moderate<br>post-peak<br>behaviour               |
|----------------------------------|-----------------------------|-------------------------|------|------|-----------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Weng et al.<br>[46]              | Clay brick                  | Lateral<br>cyclic test  | 3000 | 1500 | GFRP meth             | Cement<br>mortar coating<br>on GFRP<br>mesh                              | of energy<br>increased m<br>100 to<br>286.5%<br>ultimate<br>displacement<br>grow from<br>100 to<br>166.4%           | Brick at<br>footing<br>crushed<br>detachment<br>of GFRP<br>sheets                     |
| Sadek and<br>Lissel [53]         | Hollow<br>concrete<br>block | Lateral<br>cyclic test  | 1600 | 1400 | GFRP Geogrids         | Grid and<br>Ladder shape<br>GFRP mesh<br>used in bed<br>joints           | Lateral<br>capacity<br>increased in<br>average<br>54.7% (grid<br>85% ladder:<br>25%)<br>Failure mode<br>occurred at | Grid:<br>detachment<br>of mortar a<br>sliding,<br>Ladder:<br>diagonal step<br>failure |
| El-Diasity<br>et al. [54]        | Clay brick                  | Lateral<br>cyclic test  | 2400 | 2020 | GFRP –<br>Ferrocement | Ferrocement:<br>Laying of<br>mortar layer<br>and diagonal<br>GFRP sheets | capacity and<br>ductility,<br>strength: 27-<br>32%,<br>Dissipation<br>of energy:<br>33-85%<br>Ultimate              | Failure due to<br>the diagonal<br>shear cracks                                        |
| Eftekhar<br>and Emami<br>[22]    | Clay brick                  | Diagonal<br>compression | 870  | 870  | GFRP sheets           | Boring and<br>Grooving<br>methods in<br>mounting the<br>sheets           | strain in<br>boring: 23-<br>43% and<br>grooving<br>method: 21.3-<br>33%                                             | Sliding in<br>horizontal<br>bed joints<br>and diagonal<br>splitting                   |
| Al Sayed et<br>al. [55]          | Hollow<br>concrete<br>block | Blast<br>loading        | 2900 | 1500 | GFRP sheets           | GFRP sheets<br>attached to<br>one side of<br>wall and<br>anchored infill | Strengthen<br>wall remain<br>attached to<br>Infill                                                                  | Debonding of<br>GFRP sheets<br>observed                                               |

Based on the investigation of the literature concerning experimental tests on unreinforced masonry walls and GFRP strengthened masonry wall, a dataset of the results of shear-compression tests and out-of-plane test has been built and the main data are listed in Table 2. Note that in the last column DT, DB, DL and SF are shortened words for diagonal tension, debonding, delamination and Shear failure.

| <b>Table 2.</b> Database of experimental results on mason y wans remoted by Or III |
|------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------|

|             |     |          |                  |             | Length | Height | Aspec   | P [kN]               | P.IkNI         | $\delta$ [mm]       | $\delta$ [mm]      |       |         |
|-------------|-----|----------|------------------|-------------|--------|--------|---------|----------------------|----------------|---------------------|--------------------|-------|---------|
| Authors     | Set | Specimen | Description      | Type of     | (L)    | (H)    | t ratio | max[net]             | and the state  | or.                 | P                  | μ     | Failure |
|             |     |          | 2                | loading     | (mm)   | (mm)   | (H/L)   | or                   | ar             | 01                  | or<br>             | ~     | mode    |
|             |     |          |                  |             |        |        |         | $f_{max}[MPa]$       | $f_{ult}[MPa]$ | Υ <sub>τ</sub> _[%] | γ <sub>τ</sub> [%] |       |         |
|             |     |          |                  |             |        |        |         |                      |                |                     |                    |       |         |
|             |     | URM1     |                  | Diagonal    | 1200   | 1200   | 1       | 131 kN;<br>0.21 MDs  | 0.31<br>MDe    | 0.08 %              | 0.08 %             | 1.00  | DT      |
|             |     | TIRNO    |                  | Diagonal    | 1200   | 1200   | ,       | 0.51 MPa<br>100 kN-  | 0.24           | 0.11.96             | 0.11.96            | 1.00  | DT      |
|             |     | URM2     |                  | compression | 1200   | 1200   | 1       | 0.24 MPa             | MPa            | 0.11 /0             | 0.11 /0            | 1.00  | 21      |
|             |     | URM3     |                  | Diagonal    | 1200   | 1200   | 1       | 98 kN;               | 0.23           | 0.05 %              | 0.05 %             | 1.00  | DT      |
|             |     | 01010    | Unreinforced     | compression |        |        | -       | 0.23 MPa             | MPa            |                     |                    |       |         |
|             | 1   | URM4     | masonry wall     | Diagonal    | 1200   | 1200   | 1       | 96 kN;               | 0.23           | 0.09 %              | 0.17 %             | 1.89  | DT      |
|             |     |          |                  | compression |        |        |         | 0.23 MPa             | MPa            |                     |                    |       |         |
|             |     | URM5     |                  | Diagonal    | 1200   | 1200   | 1       | 122 kN;              | 0.3 MPa        | 0.09 %              | 0.11 %             | 1.22  | DT      |
|             |     |          |                  | compression |        |        |         | 0.3 MPa              |                |                     |                    |       |         |
|             |     | URM6     |                  | Diagonal    | 1200   | 1200   | 1       | 93 kN;               | 0.23           | 0.14 %              | 0.15 %             | 1.07  | DT      |
|             |     | SC 2.1   |                  | Diagonal    | 1200   | 1200   | 1       | 425 kN-              | 0.0 MDa        | 0.52.96             | 0.61.%             | 1.17  | DT+DB   |
|             | 2   | 50-2-1   | Sand-Cement      | compression | 1200   | 1200   | •       | 1 MPa                | 0.0 0.00       | 0.02                | 0.01 /0            | ••••  | 21.22   |
|             | -   | SC-2-2   | Plaster          | Diagonal    | 1200   | 1200   | 1       | 410 kN;              | 0.94           | 0.36 %              | 0.36 %             | 1.00  | DT+DB   |
|             |     |          |                  | compression |        |        |         | 0.94 MPa             | MPa            |                     |                    |       |         |
|             |     | SC1-1-1  |                  | Diagonal    | 1200   | 1200   | 1       | 203 kN;              | 0.39           | 0.23 %              | 0.64 %             | 2.78  | DT      |
|             |     |          | Cement - lime+   | compression |        |        |         | 0.48 MPa             | MPa            |                     |                    |       |         |
|             |     | SC1-1-2  | glass fiber      | Diagonal    | 1200   | 1200   | 1       | 202 kN;<br>0.48 MDs  | 0.39<br>MDe    | 0.37 %              | 0.79 %             | 2.14  | DT      |
|             | 3   | \$61.2.1 | plaster on each  | Diagonal    | 1200   | 1200   | 1       | 401 kN               | 0.0 MPa        | 0 38 %              | 0.45.96            | 1.19  | DT+DB   |
|             |     | 301-2-1  | and both side    | compression | 1200   | 1200   | 1       | 0.95 MPa             | 0.0 0.00       | 0.20 /0             | 0.10 /0            | 1.10  | 21.22   |
| -           |     | SC1-2-2  |                  | Diagonal    | 1200   | 1200   | 1       | 378 kN;              | 0.85           | 0.09 %              | 0.24 %             | 2.67  | DT+DB   |
|             |     |          |                  | compression |        |        |         | 0.9 MPa              | MPa            |                     |                    |       |         |
|             |     | SL-1-1   |                  | Diagonal    | 1200   | 1200   | 1       | 190 kN;              | 0.38           | 0.39 %              | 1.05 %             | 2.69  | DT      |
|             |     |          | lime+ glass      | compression |        |        |         | 0.45 MPa             | MPa            |                     |                    |       |         |
| Del zonno   |     | SL-1-2   | fiber plaster on | Diagonal    | 1200   | 1200   | 1       | 185 kN;              | 0.37           | 0.19 %              | 1.36 %             | 7.16  | DT      |
| et al [25]  | 4   | 67.01    | each and both    | Diagonal    | 1200   | 1200   | 1       | 0.44 MPa<br>200 LNI  | 0.7 MDa        | 0.06.94             | 0.09.94            | 1 2 2 | DT+DP   |
| er al. [20] |     | 51-2-1   | side             | compression | 1200   | 1200   | 1       | 0.68 MPa             | 0.7 MIPA       | 0.00 %              | 0.06 70            | 1.55  | DIFDB   |
|             |     | SL-2-2   |                  | Diagonal    | 1200   | 1200   | 1       | 355 kN;              | 0.81           | 0.16 %              | 0.24 %             | 1.50  | DT+DB   |
|             |     |          |                  | compression |        |        |         | 0.83 MPa             | MPa            |                     |                    |       |         |
|             |     | G30CL-1- | GFRP mesh        | Diagonal    | 1200   | 1200   | 1       | 159 kN;              | 0.3 MPa        | 0.22 %              | 0.58 %             | 2.64  | DT      |
|             |     | 1        | 30*30 with       | compression |        |        |         | 0.38 MPa             |                |                     |                    |       |         |
|             |     | G30CL-1- | cement – lime    | Diagonal    | 1200   | 1200   | 1       | 156 kN;              | 0.31           | 0.66 %              | 1.75 %             | 2.65  | DT      |
|             | 5   | 2        | mortar + glass   | compression |        |        |         | 0.37 MPa             | MPa            |                     |                    |       |         |
|             |     | G30CL-2- | fiber on one     | Diagonal    | 1200   | 1200   | 1       | 402 kN;              | 0.89           | 0.12 %              | 0.51 %             | 4.25  | DT+DB   |
|             |     | 1        | side and both    | compression |        |        |         | 0.95 MPa             | MPa            |                     |                    |       |         |
|             |     | G30CL-2- | side             | Diagonal    | 1200   | 1200   | 1       | 398 kN;              | 0.76           | 0.32 %              | 0.39 %             | 1.22  | DT+DB   |
|             |     | 2        |                  | compression |        |        |         | 0.93 MPa             | MPa            |                     |                    |       |         |
|             |     | G30L-1-1 | GFRP mesh        | Diagonal    | 1200   | 1200   | 1       | 175 kN;              | 0.36           | 0.24 %              | 0.78 %             | 3.25  | DT      |
|             |     |          | 30*30 with       | compression | 1000   | 1000   |         | 0.41 MPa             | MPa            | 0.07.0/             |                    |       |         |
|             |     | G30L-1-2 | lime mortar +    | Diagonal    | 1200   | 1200   | 1       | 212 KN;<br>0.48 MDs  | 0.4 MPa        | 0.07 %              | 0.71 %             | 10.14 | DI      |
|             | 6   | G30T 2 1 | glass fiber on   | Diagonal    | 1200   | 1200   | 1       | 306 kN               | 0.59           | 0.09.%              | 0.24.%             | 2.67  | DT+DB   |
|             |     | G30L-2-1 | one side and     | compression | 1200   | 1200   | 1       | 0.72 MPa             | MPa            | 0.00 /0             | 0.24 /0            | 2.07  | 01.00   |
|             |     | G30L-2-2 | both side        | Diagonal    | 1200   | 1200   | 1       | 217 kN;              | 0.42           | 0.06 %              | 0.1 %              | 1.67  | DT+DB   |
|             |     |          |                  | compression |        |        |         | 0.52 MPa             | MPa            |                     |                    |       |         |
|             |     | G40CL-1- | GFRP mesh        | Diagonal    | 1200   | 1200   | 1       | 161 kN;              | 0.32           | 0.27 %              | 0.69 %             | 2.56  | DT      |
|             |     | 1        | 40*40 with       | compression |        |        |         | 0.38 MPa             | MPa            |                     |                    |       |         |
|             |     | G40CL-1- | cement – lime    | Diagonal    | 1200   | 1200   | 1       | 166 kN;              | 0.31           | 0.2 %               | 0.88 %             | 4.40  | DT      |
|             | 7   | 2        | mortar + glass   | compression |        |        |         | 0.59 MPa             | MPa            |                     |                    |       |         |
|             |     | G40CL-2- | fiber on one     | Diagonal    | 1200   | 1200   | 1       | 448 kN;              | 0.97           | 0.76 %              | 1.81 %             | 2.38  | DT+DB   |
|             |     | 1        | side and both    | compression |        |        |         | 1.05 MPa             | MPa            |                     |                    |       |         |
|             |     | G40CL-2- | side             | Diagonal    | 1200   | 1200   | 1       | 420 kN;              | 0.83           | 0.5 %               | 0.83 %             | 1.66  | DT+DB+  |
|             |     | 2        |                  | compression |        |        |         | 0.96 MPa             | MPa            |                     |                    |       | DL      |
|             |     | G40L-1-1 |                  | Diagonal    | 1200   | 1200   | 1       | 163 kN;              | 0.31<br>MDa    | 0.2 %               | 0.66 %             | 3.30  | DT      |
|             |     | G401-1-2 | GFRP mesh        | Diagonal    | 1200   | 1200   | 1       | 0.59 MPa<br>165 - MM | 0.31           | 0.47.%              | 0.92.96            | 1.06  | DT      |
|             |     | G40L-1-2 | 40*40 with       | compression | 1200   | 1200   | 1       | 0.30 MPa             | MPa            | 9.47.70             | 9.92 70            | 1.90  | 2.      |

|                           | 8 | G40L-2-1            | lime mortar +                               | Diagonal                | 1200 | 1200 | 1     | 314 kN;<br>0.74 MPs       | 0.57<br>MPa  | 0.07 %       | 0.34 %      | 4.86  | DT+DB                       |
|---------------------------|---|---------------------|---------------------------------------------|-------------------------|------|------|-------|---------------------------|--------------|--------------|-------------|-------|-----------------------------|
|                           |   | G40L-2-2            | glass fiber on<br>one side and<br>both side | Diagonal<br>compression | 1200 | 1200 | 1     | 436 kN;<br>0.82 MPa       | 0.69<br>MPa  | 0.11 %       | 0.5 %       | 4.55  | DT+DB                       |
|                           |   | W1                  | ootii side                                  | Cyclic shear            | 850  | 633  | 0.74  | 62.1 kN                   | 55.89        | 0.6 mm       | 3.39 mm     | 5.65  | DT                          |
| Concernation              | 1 | W2                  | URM                                         | test<br>Cyclic shear    | 850  | 633  | 0.74  | 60.21 kN                  | kN<br>54.19  | 1.94 mm      | 3.97 mm     | 2.05  | DT                          |
| and<br>Magagnini          | 2 | W1-D-               | Wall retrofitted by<br>diagonal GFRP        | Cyclic shear<br>test    | 850  | 633  | 0.74  | 92.22 kN                  | 83.0 kN      | 0.81 mm      | 6.03 mm     | 7.44  | DL                          |
| (2021) [23]               | 3 | W2-H-<br>GFRP       | Wall retrofitted by                         | Cyclic shear<br>test    | 850  | 633  | 0.74  | 91.32 kN                  | 82.19<br>kN  | 2.1 mm       | 12.76<br>mm | 6.08  | DL                          |
|                           | Ĩ | W3-H-<br>GFRP       | horizontal GFRP                             | Cyclic shear<br>test    | 850  | 633  | 0.74  | 88.76 kN                  | 79.88<br>kN  | 2.52 mm      | 9.37 mm     | 3.72  | DL                          |
|                           | 1 | Wall-C              | URM                                         | Cyclic shear<br>test    | 1600 | 1400 | 0.875 | 60 kN                     | 40.21<br>kN  | 2 mm         | 5.04 mm     | 2.52  | Step<br>cracks              |
|                           | 2 | Wall-S              | Steel ladder<br>shape mesh in<br>bed joints | Cyclic shear<br>test    | 1600 | 1400 | 0.875 | 68 kN                     | 57.39<br>kN  | 3 mm         | 4.05 mm     | 1.35  | Sliding                     |
|                           |   | Wall-<br>G(grid)    | GFRP mesh<br>with sectional                 | Cyclic shear<br>test    | 1600 | 1400 | 0.875 | 105 kN                    | 48.26<br>kN  | 5 mm         | 10.14<br>mm | 2.03  | Sliding                     |
| Sadek and<br>Lissel       | 3 | Wall-<br>G(ladder)  | area of 7.1 in<br>bedjoints                 | Cyclic shear<br>test    | 1600 | 1400 | 0.875 | 96 kN                     | 47.17<br>kN  | 5 mm         | 10.14<br>mm | 2.03  | Step<br>cracks              |
| [53]                      |   | Wall-<br>G(truss)   | -                                           | Cyclic shear<br>test    | 1600 | 1400 | 0.875 | 100 kN                    | 91.3 kN      | 5 mm         | 10.14<br>mm | 2.03  | Sliding                     |
|                           |   | Wall-<br>E(ladder)  | GFRP mesh<br>with sectional                 | Cyclic shear<br>test    | 1600 | 1400 | 0.875 | 70 kN                     | 32.17<br>kN  | 4 mm         | 10.14<br>mm | 2.54  | Step<br>cracks              |
|                           | 4 | Wall-<br>El(Grid)   | area of 4.5 in<br>bed joints                | Cyclic shear<br>test    | 1600 | 1400 | 0.875 | 111 kN                    | 29.13<br>kN  | 10 mm        | 20.22<br>mm | 2.02  | Sliding                     |
|                           |   | Wall-<br>E2(grid)   | ocu jonnis                                  | Cyclic shear<br>test    | 1600 | 1400 | 0.875 | 80 kN                     | 76.3 kN      | 5 mm         | 15.22<br>mm | 3.04  | Sliding                     |
|                           | 1 | CLY-S-<br>CTRL      | URM                                         | Lateral Cyclic          | 2400 | 2020 | 0.84  | 290 kN                    | 248.83<br>kN | 8.5 mm       | 15.4 mm     | 1.81  | SF+DT                       |
|                           |   | CLY-S-              |                                             | Lateral Cyclic          | 2400 | 2020 | 0.84  | 360 kN                    | 281.4        | 7.5 mm       | 15.1 mm     | 2.01  | SF+DT                       |
|                           | 2 | Ferro-C<br>2 CLY-S- | Solid masonry<br>wall retrofitted           | Lateral Cyclic          | 2400 | 2020 | 0.84  | 378.5 kN                  | KN<br>332.56 | 11.25        | 14.05       | 1.25  | Rocking                     |
|                           |   | Ferro-X             | by ferrocement                              | Lateral Cyclic          | 2400 | 2020 | 0.84  | 376 kN                    | kN<br>351.16 | nun<br>85 mm | mm<br>11.95 | 1.41  | Rocking                     |
|                           |   | Ferro-F             |                                             | 200000                  | 2400 | 2020 | 0.04  |                           | kN           |              | mm          | 1.41  |                             |
| El-Diasity<br>et al. [54] | 3 | CLY-S-<br>GFRP-X    | Solid masonry<br>wall retrofitted           | Lateral Cyclic          | 2400 | 2020 | 0.84  | 386 kN                    | 360.46<br>kN | 11 mm        | 13.8 mm     | 1.25  | Rocking                     |
|                           |   | CLY-S-<br>GFRP-F    | by GFRP                                     | Lateral Cyclic          | 2400 | 2020 | 0.84  | 540 kN                    | 542 kN       | 14 mm        | 14 mm       | 1.00  | Rocking                     |
|                           |   | CLY-P-W             | URM with                                    | Lateral Cyclic          | 2400 | 2020 | 0.84  | 250 kN                    | 217.5        | 12 mm        | 16.2 mm     | 1.35  | SF                          |
|                           | 4 | CLY-P-D             | opening                                     | Lateral Cyclic          | 2400 | 2020 | 0.84  | 205 kN                    | 120.37<br>kN | 15 mm        | 27 mm       | 1.80  | SF                          |
|                           |   | CLY-D-              | URM with                                    | Lateral Cyclic          | 2400 | 2020 | 0.84  | 270 kN                    | 185.19       | 16 mm        | 34 mm       | 2.13  | Diagonal                    |
|                           | 5 | Ferro<br>CLY-W-     | opening<br>retrofitted by                   | Lateral Cyclic          | 2400 | 2020 | 0.84  | 335 kN                    | KN<br>257.5  | 7.3 mm       | 27 mm       | 3.70  | around                      |
|                           |   | Ferro               | ferrocement                                 | -                       | 2.00 | 2020 | 0.01  |                           | kN           |              |             | 2.70  | opening                     |
|                           | 1 | MSR1                | URM                                         | Lateral Cyclic          | 1500 | 2000 | 1.33  | 155 kN                    | 76 kN        | 7.87 mm      | 11.9 mm     | 1.51  | DT                          |
| Gatteres                  | 2 | MSR2                | CERV                                        | Lateral Cyclic          | 1500 | 2000 | 1.33  | 216 kN                    | 94 kN        | 14.98        | 22.77       | 1.52  | DB                          |
| et al. [42]               | 2 | MSR3                | jacketing                                   | Lateral Cyclic          | 1500 | 2000 | 1.33  | 181 kN                    | 112.5<br>kN  | 20.05<br>mm  | 24.04<br>mm | 1.20  | Out-Of-<br>Plane<br>bending |
|                           | 3 | MSR4                | Hybrid                                      | Lateral Cyclic          | 1500 | 2000 | 1.33  | 201 kN                    | 67.5 kN      | 16.1 mm      | 24.08<br>mm | 1.50  | DB                          |
|                           |   | 35-UR               |                                             | Diagonal<br>Cyclic      | 300  | 300  | 1     | 204.5 kN;<br>0.753<br>MPa | 0.28<br>MPa  | 0.248 %      | 2.68 %      | 10.81 | DT                          |

|                          | 1 | 36-UR          | URM                                 | Diagona<br>Cyclic              | el .       | 300  | 300  | 1    | 197.7 kN;<br>0.702                | 0.56<br>MPa        | 0.292 % | 2.99 %      | 10.24 | DT                             |
|--------------------------|---|----------------|-------------------------------------|--------------------------------|------------|------|------|------|-----------------------------------|--------------------|---------|-------------|-------|--------------------------------|
|                          |   | 31-RO          |                                     | Diagona                        | d          | 300  | 300  | 1    | 202.9 kN;                         | 0.43               | 0.37 %  | 12.64 %     | 34.16 | DT                             |
|                          |   | 32-RO          | Masonry panels                      | Diagona                        | d          | 300  | 300  | 1    | 0.09 MPa<br>228.3 kN;<br>0.7 MPa  | MPa<br>0.45<br>MPa | 0.37 %  | 9.09 %      | 24.57 | DT                             |
| Borri et                 |   | 33-D           | retrofitted by<br>GFRP and          | Diagona                        | d          | 300  | 300  | 1    | 236.4 kN;                         | 0.75               | 0.57 %  | 7.88 %      | 13.82 | DT                             |
| al. [43]                 | 2 | 34-D           | different mortar<br>coating         | Diagona                        | d          | 300  | 300  | 1    | 0.82 MPa<br>258.5 kN;<br>0.01 MPa | 0.66<br>MDa        | 0.63 %  | 12.48 %     | 19.81 | DT                             |
|                          |   | 37 <b>-</b> R2 | -                                   | Diagona                        | d          | 300  | 300  | 1    | 315.6 kN;<br>1.28 MPa             | 1 MPa              | 0.75 %  | 7.64 %      | 10.19 | DB                             |
|                          |   | 38-R2          |                                     | Diagona                        | al         | 300  | 300  | 1    | 325.5 kN;<br>1.34 MPa             | 1.02<br>MPa        | 0.76 %  | 7.18 %      | 9.45  | DB                             |
|                          |   | 39-C           |                                     | Diagona                        | d          | 300  | 300  | 1    | 431.4 kN;<br>1.54 MPa             | 1.25<br>MPa        | 0.76 %  | 11.37 %     | 14.96 | DB                             |
|                          |   | 40-C           |                                     | Diagona<br>Cyclic              | al         | 300  | 300  | 1    | 420.3 kN;<br>1.47 MPa             | 1.19<br>MPa        | 0.52 %  | 6.55 %      | 12.60 | DB                             |
|                          |   | W1             |                                     | Diagona<br>Compre              | d<br>ssion | 1200 | 1200 | 1    | 189.31<br>kN: 0.445               | 0.445<br>MPa       | 0.06 %  | 0.06 %      | 1.00  | SF+<br>Sliding                 |
| Mustafarai               | 1 | W2             | URM                                 | Diagona                        | d<br>ssion | 1200 | 1200 | 1    | MPa<br>199.28<br>kN: 0.47         | 0.47<br>MPa        | 0.023 % | 0.023 %     | 1.00  | SF+<br>Sliding                 |
| and                      |   | W3             |                                     | Diagona                        | d          | 1200 | 1200 | 1    | MPa<br>149.46                     | 0.41               | 0.04 %  | 0.04 %      | 1.00  | SF+                            |
| Y ardim<br>[45]          |   |                |                                     | Compre                         | ssion      | 1200 | 1200 | •    | kN; 0.41<br>MPa                   | MPa                |         |             | 1.00  | Sliding                        |
|                          |   | W4-<br>GERP    |                                     | Diagona<br>Compre              | d<br>ssion | 1200 | 1200 | 1    | 278.99<br>kN; 0.6                 | 0.6 MPa            | 0.04 %  | 0.2 %       | 5.00  | DT +<br>yielding               |
|                          |   | W5.            | GFRP mesh                           | Diagona                        | a          | 1200 | 1200 | 1    | MPa<br>209.24                     | 0.52               | 0.44.96 | 0.5.96      | 1 14  | of mesh<br>DT +                |
|                          | 2 | GFRP           | embedded in<br>coating              | Compre                         | ssion      | 1200 | 1200 |      | kN; 0.52<br>MPa                   | MPa                |         |             |       | yielding<br>of mesh            |
|                          |   | W6-<br>GFRP    |                                     | Diagona<br>Compre              | d<br>ssion | 1200 | 1200 | 1    | 189.316<br>kN; 0.44               | 0.44<br>MPa        | 0.1 %   | 0.2 %       | 2.00  | DT +<br>yielding               |
|                          | 1 | ILW1           | Unreinforced                        | Cvelie                         | shear      | 835  | 63   | 0.74 | MPa<br>61.8 kN                    | 46.8 kN            | 3.36 mm | 4.61 mm     | 1 37  | of mesh<br>DT                  |
| Capozucca                | · | 0-111          | masonry wall                        | test                           |            | 000  |      | 0.74 |                                   |                    |         |             | 1.57  |                                |
| Magagnini<br>(2020) [10] | 2 | DR-W1          | Reinforced by<br>GFRP strips        | Cyclic<br>test                 | shear      | 835  | 63   | 0.74 | 90.8 kN                           | 78.76<br>kN        | 2.98 mm | 4.67 mm     | 1.57  | DL                             |
|                          | 3 | R-W2           | Repaired with<br>GFRP strips        | Cyclic<br>test                 | shear      | 835  | 63   | 0.74 | 45.83 kN                          | 40.81<br>kN        | 5.17 mm | 7.88 mm     | 1.52  | DL                             |
|                          | 1 | Clay1          | Clay masonry                        | Static<br>test                 | shear      | 1200 | 1200 | 1    | 114.98 kN                         | 104.44<br>kN       | 6.38 mm | 14.02<br>mm | 2.20  | Sliding                        |
|                          | • | Clay2          | units                               | Static                         | shear      | 1200 | 1200 | 1    | 196.72 kN                         | 74.1 kN            | 11.52   | 12.1 mm     | 1.05  | Detachme                       |
| Stratford                |   | Clay3          |                                     | Static<br>test                 | shear      | 1200 | 1200 | 1    | 181.96 kN                         | 166.28<br>kN       | 9.46 mm | 10.2 mm     | 1.08  | DT                             |
| et al. [18]              | 2 | Concrete l     | Hellow                              | Static<br>test                 | shear      | 1200 | 1200 | 1    | 79.59 kN                          | 59.36<br>kN        | 8.04 mm | 12.46<br>mm | 1.55  | DT                             |
|                          | - | Concrete2      | Concrete                            | Static<br>test                 | shear      | 1200 | 1200 | 1    | 105.02 kN                         | 92.26<br>kN        | 7.24 mm | 12.09<br>mm | 1.67  | DB                             |
|                          |   | Concrete3      | masonry units                       | Static<br>test                 | shear      | 1200 | 1200 | 1    | 131.51 kN                         | 110.47<br>kN       | 7.71 mm | 12.22<br>mm | 1.58  | DT                             |
|                          |   | IPL-C          | URM                                 | In-Plane<br>Lateral            | •          | 1650 | 1450 | 0.87 | 125 kN                            | 125 kN             | 0.8 mm  | 0.8 mm      | 1.00  | Diagonal<br>Sliding            |
| Al-<br>Salloum           | 1 | IPL-S          | Strengthened<br>by GFRP<br>laminate | In-Plane<br>Lateral<br>Loading | ,<br>2     | 1650 | 1450 | 0.87 | 626 kN                            | 510 kN             | 1.28 mm | 1.3 mm      | 1.02  | Detachme<br>nt of<br>laminates |
| and Al-<br>Musallum      |   | IPV-C          | URM                                 | In-Plane<br>Vertical           | •          | 1650 | 1450 | 0.87 | 445 kN                            | 445 kN             | 0.6 mm  | 0.6 mm      | 1.00  | Crushing                       |
| [56]                     | 2 |                | Strangthered                        | Loading<br>In-Diana            |            | 1650 | 1450 | 0.07 | 320 kN                            | 280 MM             | 1.2 mm  | 13 mm       | 1.09  | Detachme                       |
|                          |   | IPV-S          | by GFRP                             | Vertical<br>Loading            |            | 1050 | 1450 | 0.07 | 220 814                           | 200 214            |         |             | 1.00  | nt due to<br>buckling          |

# 6. Conclusions

In this paper, a literature review of the theoretical formulations used to predict the capacities of masonry walls retrofitted by GFRP materials subjected to in-plane and out-of-plane loading are reported. Furthermore, this study presents a manuscript aimed at a systematic review of the existing seismic retrofit/strengthening techniques by using GFRP for unreinforced masonry walls. A detailed anthology and organized review based on their common characteristics and effects on the seismic performance were described. According to the results of the studies:

• Despite the fact that in majority of cased retrofits were successful, Delamination and shear failure of the walls can suddenly occur without exploring all the potentialities of the strengthening material. Also, the increase in resistance was appreciable, in particular, in the case of the wall reinforced with diagonal GFRP strips as the delamination phenomenon is avoided, in other term, failure mode of the strengthened masonry wall heavily depends on the local debonding.

- In the terms of Comparison of effectiveness of GFRP strips, it could be comprehended that the efficiency of combination of horizontal and vertical has more improvement in shear strength compare to diagonal configuration.
- Regarding horizontal and diagonal applications of GFRP strips and both of them, horizontal stripes have more effect on the improvement of shear capacity.
- Despite the fact that application of GFRP sheets on one side of the wall compared to both sides, is more realistic, makes the walls more prone and susceptible to out-of-plane deformation but provides better ductility.
- Throughout the review, almost in all of the studies application of GFRP materials compared to conventional materials like

Steel mesh, provide better post-peak behaviour and moderate decrease in load capacity and stiffness.

- In FRCM technique using cement as a mortar coating provides higher stiffness rather than lime. In stark contrast, however, using a lower cement ratio in coating mortar caused lower capacity of dissipation of energy.
- Regarding application of FRCM on one side of walls, prediction equations in designing guidelines codes, e.g., ACI, should be considered 30% reduced.

## **Conflict of interest**

There is not conflict of interest.

# References

[1] Coburn, Andrew, and Robin Spence. Earthquake protection. John Wiley & Sons, 2003.

[2] Figueiredo, A., H. Varum, A. Costa, D. Silveira, and C. Oliveira. "Seismic retrofitting solution of an adobe masonry wall." Materials and Structures 46, no. 1 (2013): 203-219.

[3] Wang, Chuanlin, John P. Forth, Nikolaos Nikitas, and Vasilis Sarhosis. "Retrofitting of masonry walls by using a mortar joint technique; experiments and numerical validation." Engineering Structures 117 (2016): 58-70.

[4] Ingham, Jason M., and Michael C. Griffith. "The performance of unreinforced masonry buildings in the 2010/2011 Canterbury earthquake swarm." Report to the Royal Commission of Inquiry (2011).

[5] Gattesco, Natalino, and Ingrid Boem. "Out-of-plane behavior of reinforced masonry walls: Experimental and numerical study." Composites Part B: Engineering 128 (2017): 39-52.

[6] Iuorio, Ornella, Jamiu A. Dauda, and [6] Paulo B. Lourenço. "Experimental evaluation of out-of-plane strength of masonry walls retrofitted with oriented strand board." Construction and Building Materials 269 (2021): 121358.

[7] Mustafaraj, Enea, and Yavuz Yardim. "Retrofitting damaged unreinforced masonry using external shear strengthening techniques." Journal of Building Engineering 26 (2019): 100913.

[8] Haach, Vladimir G., Graça Vasconcelos, and Paulo B. Lourenço. "Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars." Construction and Building Materials 25.6 (2011): 2980-2987.

[9] Corradi, Marco, Antonio Borri, and Andrea Vignoli. "Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997-1998." Construction and building materials 16.4 (2002): 229-239.

[10] Capozucca, R., and E. Magagnini. "Experimental response of masonry walls in-plane loading strengthened with

GFRP strips." Composite Structures 235 (2020): 111735.

[11] Capozucca, Roberto. "Experimental FRP/SRP - historic masonry delamination." Composite structures 92.4

(2010): 891-903.

[12] Walraven, J. C., and A. Q. C. van der Horst. fib model code for concrete structures 2010. Internation Federation for Structural Concrete (fib), 2013.
[13] Drougkas, Anastasios, Pere Roca, and Climent Molins. "Numerical prediction of the behavior, strength and elasticity of masonry in compression." Engineering Structures 90 (2015): 15-28.

[14] Drougkas, Anastasios, et al. "The confinement of mortar in masonry under compression: Experimental data and micro-mechanical analysis." International Journal of Solids and Structures 162 (2019): 105-120.

[15] Capozucca, R., and V. Ricci. "Bond of GFRP strips on modern and historic brickwork masonry." Composite structures 140 (2016): 540-555.

[16] Den Hartog, Jacob Pieter. Advanced strength of materials. Courier Corporation, 1987.

[17] Capozucca, R. "Double-leaf masonry walls under in-plane loading strengthened with GFRP/SRG strips." Engineering Structures 128 (2016): 453-473. [18] Stratford, Tim, et al. "Shear strengthening masonry panels with sheet glass-fiber reinforced polymer." Journal of Composites for Construction 8.5 (2004): 434-443.

[19] ACI (American Concrete Institute). "Design and construction guide of externally bonded FRCM systems for concrete and masonry repair and strengthening." (2013).

[20] European Committee for Standardization (CEN),. "EN 1052-3: Methods of test for masonry - Part 3:Determination of initial shear strength." (2007).

[21] Triantafillou, Thanasis C. "Strengthening of masonry structures using epoxy-bonded FRP laminates." Journal of composites for construction 2.2 (1998): 96-104.

[22] Eftekhar, Mohamad Reza, and Mehran Emami. "Investigation the Different Methods of Connecting GFRP Sheets to Ductility and In-Plane Behavor of Masonry Walls." Journal Of Ferdowsi Civil Engineering 31.2 (2018): 57-73.

[23] Capozucca, R., and E. Magagnini. "Brickwork wall models strengthened with diagonal and horizontal GFRP strips." Composite Structures 271 (2021): 114062.

[24] Capozucca, Roberto. "Experimental FRP/SRP - historic masonry delamination." Composite structures 92.4 (2010): 891-903.

[25] Del Zoppo, Marta, et al. "In-plane shear capacity of tuff masonry walls with traditional and innovative Composite Reinforced Mortars (CRM)." Construction and Building Materials 210 (2019): 289-300.

[26] ACI Committee 549, Guide to Design and Construction of Externally Bonded FRP Systems for Repair and Strengthening Concrete and Masonry Structures ACI 459.4 R13, American Concrete Institute, Farmington Hills, MI, 2013.

[27] Antonietta, AIELLO Maria, et al. "Istruzioni per la Progettazione, l'

Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati Materiali, strutture di ca e di cap, strutture murarie CNR-DT 200 R1/2013." (2013): 1-168.

[28] Yu, Piyong, Pedro Silva, and Antonio Nanni. "In-plane performance of unreinforced concrete masonry strengthened with prestressed GFRP bars." Journal of Composites for Construction 21.1 (2017): 04016064.

[29] Yu, Piyong, Pedro Franco Silva, and Antonio Nanni. "Innovative mechanical device for the post-tensioning of glass fiber reinforced polymer bars for masonry type retrofit applications." Experimental mechanics 44.3 (2004): 272-277.

[30] De Lorenzis, Laura, Antonio Nanni, and Antonio La Tegola. "Bond of near surface mounted FRP rods in concrete masonry units." The Seventh Annual International Conference on Composites Engineering (ICCE/7), Denver, Colorado. 2000.

[31] Essawy, Ahmed S., and Robert G. Drysdale. "Macroscopic failure criterion for masonry assemblages." Proc., 4th Canadian Masonry Symp. Vol. 1. 1986.

[32] Wang, Q., Z. Chai, Y. Huang, Y. Yang, and Y. Zhang. "Seismic shear capacity of brick masonry wall reinforced by GFRP." (2006): 563-580.

[33] Yi, T., et al. "Flange effects on the nonlinear behaviour of URM piers." The Masonry Society Journal 26.2 (2008): 31-42.

[34] Yi, T., F. L. Moon, and R. T. Leon. "Effective pier model for the nonlinear in-plane analysis of individual URM piers." (2005): 21-35.

[35] Russell, A. P., and J. M. Ingham. "The influence of flanges on the inplane seismic performance of URM walls in New Zealand buildings." NZSEE Conference, Wellington, New Zealand. 2010.

[36] FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings. Applied Technology Council (ATC). Washington, DC; 2000.

[37] Researching Group of Seismic Design Code on Brick Masonry Structure., Shear strength of unreinforced brick masonry wall, J. Building Structures, No. 6, 5(1984) 1-12 (in Chinese).

[38] Gostič, S., A. Mezgec, and R. Žarnić. "Študija učinkovitosti naprednih metod za sanacijo zidanih stavb." Raziskovalni projekt MŠZŠ Z2-3411 (2004).

[39] Borri, Antonio, et al. "Reinforcement of historic masonry with high strength steel cords." Masonry International 23.3 (2010): 79-90.

[40] Borri, Antonio, et al. "Masonry wall panels with GFRP and steel-cord strengthening subjected to cyclic shear: An experimental study." Construction and Building Materials 56 (2014): 63-73.

[41] Gattesco, Natalino, and Ingrid Boem. "Experimental and analytical study to evaluate the effectiveness of an inplane reinforcement for masonry walls using GFRP meshes." Construction and Building Materials 88 (2015): 94-104.

[42] Gattesco, Natalino, Claudio Amadio, and Chiara Bedon. "Experimental and numerical study on the shear behavior of stone masonry walls strengthened with GFRP reinforced mortar coating and steel-cord reinforced repointing." Engineering Structures 90 (2015): 143-157.

[43] Borri, Antonio, et al. "Masonry wall panels retrofitted with thermalinsulating GFRP-reinforced jacketing." Materials and Structures 49.10 (2016): 3957-3968.

[44] Ashraf, Mohammad, et al. "Seismic behavior of unreinforced and confined brick masonry walls before and after ferrocement overlay retrofitting." International Journal of Architectural Heritage 6.6 (2012): 665-688.

[45] Mustafaraj, Enea, and Yavuz Yardim. "In-plane shear strengthening of unreinforced masonry walls using GFRP jacketing." Periodica Polytechnica Civil Engineering 62.2 (2018): 330-336.

[46] Weng, Dagen, et al. "Experimental study on seismic retrofitting of masonry walls using GFRP." Proceedings of 13th World Conference on Earthquake Engineering. 2004.

[47] Nezhad, Razieh Sistani, and Mohammad Z. Kabir. "Experimental investigation on out-of-plane behavior of GFRP retrofitted masonry panels." Construction and Building Materials 131 (2017): 630-640.

[48] Gattesco, Natalino, and Ingrid Boem. "Out-of-plane behavior of reinforced masonry walls: Experimental and numerical study." Composites Part B: Engineering 128 (2017): 39-52.

[49] Dong, Zhifang, et al. "Out-of-plane strengthening of unreinforced masonry walls using textile reinforced mortar added short polyvinyl alcohol fibers." Construction and Building Materials 260 (2020): 119910.

[50] Abdulsalam, Bahira, et al. "Behavior of GFRP strengthening masonry walls using glass fiber composite anchors." Structures. Vol. 29. Elsevier, 2021.

[51] Tumialan, J. Gustavo, Nestore Galati, and Antonio Nanni. "FRP strengthening of UMR walls subject to out-ofplane loads." ACI Structures Journal 100.3 (2003): 312-329.

[52] Tumialan, J. Gustavo, Nestore Galati, and Antonio Nanni. "Field assessment of unreinforced masonry walls strengthened with fiber reinforced polymer laminates." Journal of Structural engineering 129.8 (2003): 1047-1056.

[53] Sadek, H., and S. Lissel. "Seismic performance of masonry walls with GFRP and Geogrid Bed joint reinforcement." Construction and Building Materials 41 (2013): 977-989.

[54] El-Diasity, Mosaad, et al. "Structural performance of confined masonry walls retrofitted using ferrocement and GFRP under in-plane cyclic loading." Engineering Structures 94 (2015): 54-69.

[55] Alsayed, Saleh H., et al. "Blast response of GFRP-strengthened infill masonry walls." Construction and building materials 115 (2016): 438-451.

[56] Al-Salloum, Yousef A., and Tarek H. Almusallam. "Load capacity of concrete masonry block walls strengthened with epoxy-bonded GFRP sheets." Journal of composite materials 39.19 (2005): 1719-1745.



This is an open-access article under a <u>Creative Commons Attribution 4.0</u> <u>International License</u>.