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Abstract 

Various reasons lead to traffic oscillation, one of which is the sudden drop in the speed of the leader driver. The 

stop and go traffic wave along with two parameters [τ,δ] is propagated toward the upstream based on the Newell's 

car following model. The follower vehicle drivers respond differently to the reception wave based on their intrinsic 

behavior characteristics, which it leads to the deviation of the follower driver's behavior from the ideal driver's 

trajectory, Newell. This article is classified the follower driver's behavioral patterns based on the asymmetric 

behavioral theory in the deceleration phase and the hysteresis phenomenon in the acceleration phase, and different 

behavioral pattern of the follower vehicle driver in the NGSIM trajectory data. By fixing the parameters τ, δ, the 

hypothesized direction of the Newell driver is identified and the degree of deviation of the follower driver's 

behavior from Newell driver's path is also determined. The follower driver responds differently to the reception 

deceleration wave based on any behavioral pattern, which leads to secure a safe spacing and to change behavior at 

the behavioral change point. Then, the neural network models are developed to analyze the effective parameters at 

the microscopic level on the safe spacing of the follower driver at the behavioral change point based on different 

behavioral patterns. The analysis results show that the most effective parameters on the follower driver's safe 

spacing at the behavioral change point are two independent parameters of the follower vehicle driver's speed at the 

wave reception point and the deceleration wave leading to congestion based on the over reaction-timid behavioral 

pattern, and the parameter of the deceleration wave leading to congestion based on the under reaction-timid and 

over reaction-aggressive behavioral patterns. 

Keywords:Stop–go traffic,Safe spacing,Behavioral change point,Behavioral patterns,Artificial neural 

networks, NGSIM data. 

 

1. Introduction 

A sudden drop in the speed of the leader vehicle results in developing stop and go traffic. These results 

cause negative effects such as, time delay, consumed energy and safety dangers. Different reasons, lane 

change maneuvers and traffic moving bottleneck, leads to growth and propagate an oscillation wave in 

traffic [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] and [11]. Also , developed traffic oscillation results in 

propagating deceleration waves from downstream to upstream [7],[12]. Because of variety of features, 

modeling stop and go traffic results in estimating important congestion effects. But, scare of data trajectory 

results in making unclear in order to model time – distance diagram. 

https://search.crossref.org/?q=10.21859%2Fjces-01021
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The first theory of behavioral car following theory introduced based on two distinct curves in 

deceleration and acceleration phases of speed – spacing chart. According to this theory, spacing of 

acceleration phase bigger than deceleration phase [13]. Also, Newell considered parallel path of follower 

and leader vehicle and describe the same wave speed of stop and go traffic in both phases, deceleration 

and acceleration. But, his research couldn’t explain life cycle of traffic oscillation, generation and growth 

wave in vehicle platoon [14]. Also, The same wave speeds were considered by Del Castillo (2001). life cycle 

of traffic oscillation were analyzed in congestion. Based on his researches, traffic oscillation has grown or 

delayed according to traffic congestion. In the other words, traffic congestion results in growing traffic 

oscillation if there is congested traffic [15]. Kim and Zhang considered non-parallel trajectory of vehicles. 

Using stable time period and assuming the time interval change stability for any driver results in 

calculating waves with different speeds for any phase [16]. Yeo and Skabardonis demonstrated a 

microscopic asymmetric theory considering the speed- spacing relationship. Five states of traffic flow 

considered such as, free-flow, acceleration, deceleration, coasting and stationary [17]. Transitions and that 

traffic equilibrium exists were determined as 2-dimensional area bordered by acceleration-curve and 

deceleration-curve. Based on driver behavior characteristics, their research owing to describe  traffic 

phenomena, vehicle maneuvering error, anticipation, life cycle of stop and go traffic cases, generation, 

growth and dissipation. Based on this theory, follower behavior are arranged into two groups, under 

reaction and over reaction, in deceleration and acceleration phase. Laval and Leclercq (2010) founded that 

aggressive or timid driver behaviors cause the formation and propagation of stop and go traffic. Traffic 

oscillation properties, period and amplitude, were simulated by driver behavior and Newell car following 

model [18]. Because vehicles platoon behavior before and after oscillation is different, it results in 

identifying delay in recovering the vehicle speed. The hysteresis phenomenon in traffic oscillation are 

developed by delay of recovered speed and asymmetric spacing in deceleration and acceleration phase 

[19,20]. The asymmetric theory in deceleration and acceleration phase developed hysteresis phenomena by 

numerous researchers [21,22,23,24]. Laval founded that hysteresis magnitude estimation results in 

measurement errors and based on non-steady state conditions. Hysteresis phenomena magnitude was 

classified into four levels: Strong level, Weak level, Negligible level, Negative level. Also, he presented that 

different driver behaviors results in separate loops of flow – density plot in deceleration and acceleration 

phase. Timid behavior developed clockwise loop of speed – spacing plot and aggressive driver counter-

clockwise loop of speed – spacing plot [25]. Chen et al, 2012 presented a behavioral car-following model 

that it cause to develop the formation and propagation of stop and go waves in traffic congestion. They 

founded that driver different behaviors of before and during oscillation cause traffic oscillation [3]. Chen 

et al, 2012 analyzed traffic hysteresis using behavioral car-following model. They founded that driver 

behavior cause different type of traffic hysteresis in traffic oscillation. But, driver position is independent 

experiencing traffic oscillations [26]. Mirbaha et al., 2017 classified follower behavior using two theories, 

behavioral asymmetric theory and hysteresis. Artificial neural networks developed and studied time of 

two phases, deceleration to congestion, based on behavioral patterns. they founded Increasing the spacing 

difference of two phases results in decreasing time of under reaction – timid behavior pattern and 

increasing time of overreaction – timid behavior pattern [27]. In this paper, two theories asymmetric 

behavior theory and hysteresis phenomena were used for determining behavioral patterns. Different 

microscopic parameters were identified at the microscopic level. artificial neural networks were developed 

to simulate the follower driver's safe spacing at the behavioral change point. 
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2. Methodology  
in order to provide better understanding of the methodology, figure 1 presents an overview of the 

research.   

 

  
 

Figure1. Flowchart of research methodology 
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2.1 Driver Behavior Classification 

In this research, NGSIM data are classified into four behavioral patterns in deceleration phase and two 

behavioral patterns in acceleration phase. Using the performance errors of the follower driver in the 

deceleration phase, follower behavioral patterns were divided such as, under reaction, under constant 

reaction, over reaction, and over constant reaction. Using on the hysteresis phenomenon in the acceleration 

phase, two patterns, aggressive and timid drivers, were identified. The statistical results of the analysis of 

544 vehicle platoons of NGSIM were presented in table 1, based on the categories of drivers’ behaviors. 

Because available data of behavioral patterns was scare, only three drivers’ behaviors: over reaction-timid, 

over constant reaction-timid, and under reaction-timid were studied. 

 

Table1. Statistical results of examining 544 vehicle platoons of NGSIM 

In deceleration phase In acceleration phase 

 Aggressive Timid 

Over Reaction 295 63 232 

Under Reaction 129 19 110 

Over Constant Reaction 90 6 84 

Under Constant Reaction 30 14 16 

Platoon total 544  

 

2.2 Introducing Follower Vehicle’s Behavior Diversion  

According to figure 2, when follower vehicle receives a deceleration wave in a traffic oscillation, 

follower deviates from Newell trajectory based on different behavioral patterns. Then, follower tends to 

Newell’s trajectory in the behavior diversion point. Parameters and points of follower are identified at the 

microscopic level based on the received deceleration wave. 

 

 
Figure 2. identifying behavior diversion point 
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2.3 Calculating deceleration wave 

Aim of any car following models describe following trajectory and position of vehicle in t time to 

leader vehicle. If leader vehicle, n-1, moves with constant speed, the follower vehicle will also continue 

his/her movement with constant speed, v [14]. Spacing of two vehicles, follower and leader, may change, 

but if freeway is homogeneous and all vehicles are considered one type, spacing may considers constant, 

Sn, and change for different vehicles. Based on Newell’s car following model, if the leader vehicle speed 

changes from V to 𝑽′, a deceleration wave propagates with proportion to space (𝒅𝒊) and time (𝝉𝒊)  

parameters (
𝒅𝒊

𝝉𝒊) from the downstream to the upstream of traffic in traffic oscillation. Based on skabardonis’s 

theory, if following conditions are established for any vehicle, deceleration wave value calculates based on 

two parameters, 𝝉 and d [17]. 

 

𝑡𝑘 𝑝𝑜𝑖𝑛𝑡 
𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 

 > 𝑡𝑘 𝑝𝑜𝑖𝑛𝑡
𝐿𝑒𝑎𝑑𝑒𝑟  

𝑌𝑘 point
𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟< 𝑌𝑘 point

𝑙𝑒𝑎𝑑𝑒𝑟  

 

2.4 Introducing the Parameters 

In this paper, time of receiving deceleration wave is identified in stop and go traffic based on Newell’s 

car following model and asymmetric behavioral theory. Behavior diversion point of follower and safe 

spacing is determined for any behavioral pattern. Three independent parameters of follower are 

determined such as, W(DCC): the deceleration wave leading to congestion, 𝑉𝑓2: the follower speed of 

receiving deceleration wave, 𝑆𝑅: the follower spacing in reaction point, 𝑆𝑓2: the follower spacing of received 

deceleration wave. 

 

2.5 Developing artificial neural networks  

Because there are the complicity of the driver’s behavior and many parameters and errors, artificial 

neural networks are developed in order to model human driver’s behavior. Artificial neural networks were 

widely used for simulating traffic problems. Intelligent algorithms, artificial neural networks, can solve 

nonlinear problems in a black-box style. Zheng et al., Khodayari et al., Xiaoliang, Hongefi and Panwai have 

used artificial neural network model to simulate real traffic, based on traffic data [28, 29, 30, 31, 32]. 

Artificial neural networks are computational models that are characterized by a large parametric and 

flexible structure and inspired by neurological studies. An artificial neural network is composed of the 

arbitrary number of neurons that associate the inputs set with the outputs [33]. According to Table 2,  

multilayer perceptron structures was presented in artificial network. In this paper, multilayer perceptron 

networks were used based on the feed-forwards networks and the error back-propagation learning rule. 

The artificial neural network model consists of four layers, an input layer, two hidden layers, and an output 

layer. Any layer include neurons that get information from previous layers and then transfer them to the 

next layers. The number of neurons in the layers is determined by estimating and error in order to reach 

the ideal conditions. According to table 2, neural network structure was presented Tansig function was 

considered at the neural network stimulus. The static-based neural network training methodology is the 

consideration of weights for all variables, except for fixed input variables after training the neural network. 

Trajectory data was classified three parts, training (70%), Cross – validation (15 %), testing (15%) [34]. 
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Table 2. Structural Characteristics of the Neural Network Model 

value Parameter 

W(DCC): the deceleration wave leading to congestion 
 

Input space: 
𝑉𝑓2: the follower speed of receiving deceleration wave 

𝑆𝑓2: the follower spacing of received deceleration wave. 

Tansig 
Architecture 

𝑆𝑅: the follower spacing in reaction point 

Back - propagation Learning rule 

 

3. Data 
The FHWA has developed Vehicle trajectory data of two freeway sites, Interstate 80 (I-80) and US 

highway 101 (US-101) as the Next Generation Simulation (NGSIM) program. NGSIM data was detailed 

data sets of the vehicle class, space, vehicle class, vehicle velocity and acceleration, lane identification, 

leader and follower vehicle, spacing and headway every one-tenth of a second. Trajectory data sets were 

derived  from 5000 vehicles of I-80 freeway that were collected for a 45-min period (4:00–4:15 p.m. and 5:00–

5:30 p.m.) and vehicle trajectories of US-101 freeway that were gathered  for a 45-min period (7:50–8:35 

a.m.). Both freeways traffic conditions during the study period represent transient to congested states with 

frequent stop and-go oscillations. Using the Savitzky – Golay filter method makes smooth the raw 

trajectory data of NGSIM provided by camera for vehicle positions every 0.1 s. According to table 2, results 

of classifying behavioral patterns are presented based on behavioral theories [35 , 36]. 

 

4. Result Analysis 
4.1 Neural Network Performance Evaluation 

According to Table 3, the perceptron performance evaluation of the neural network shows that the 

correlation coefficient between observed and predicted data is based on each different behavioral pattern 

is different and it is presented associated with each variable. 

 

Table 3. Statistical Evaluation of the Neural Network Performance 

Over reaction - Aggressive Over reaction - Timid Under reaction - Timid  

0.057 0.058 0.053 MSE 

0.129 0.131 0.130 MAE 

91 % 90 % 94 % Percent Correct 

 

4.2 The Follower Vehicle Safe Spacing at the Behavioral Change Point 

4.2.1 Over reaction-timid Driver 

As shown in Fig.3, the sensitivity analysis results of the trajectory data obtained from three parameters 

at the microscopic level indicate that the most effective parameters on the follower driver safe spacing at 

the behavioral change point are the follower vehicle speed at deceleration wave reception and the 

deceleration wave. 
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Figure 3. The Sensitivity Analysis of the Independent Variables at the Microscopic Level Based on the 

Behavioral Pattern of Overreaction- timid 

 

4.2.1.1 The Neural Network Pattern of the Effective Parameter at the Microscopic Level 

As shown in Fig.4, accelerating the follower vehicle speed at the deceleration wave reception leads to 

a decrease in the follower vehicle safe spacing at the behavioral change point. Increasing the follower 

vehicle speed leads to a smoother flow of traffic. The follower driver based on the overreaction- timid 

behavioral pattern has secured the safe spacing at the higher speeds. When the follower vehicle receives 

the deceleration wave, it attempts to drop speed less and to secure a low safe spacing at the behavioral 

change point. But at lower speeds, the flow of traffic is less. When the follower driver receives the 

deceleration wave, s/he forced to lower more speed and to increase a more safe spacing at the behavioral 

change point. 

 

Figure 4. The Neural Network Pattern of the Spacing at the Behavioral Change Point Based on the Follower 

Vehicle Speed at the Deceleration Wave Reception 
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As shown in Fig.5, increasing the follower vehicle spacing at deceleration wave reception leads to an 

increase in the follower vehicle spacing at the behavioral change point. When the follower driver at less 

spacing receives the deceleration wave, the follower driver, due to the lack of maneuverability, in order to 

increase the safe spacing, his/her behavior deviates toward the ideal driver behavior at the behavioral 

change point with a less spacing. However, the follower driver with over reaction has the ability to increase 

more the safe spacing as the spacing level at deceleration wave reception increases. Consequently, s/he 

increases his/her safe spacing on the path based on his/her behavioral pattern in order to continue his 

tendency and keeping his behavior based on his/her behavioral pattern, which leads to an increase in safe 

spacing and a faster drop in speed at the behavioral change point. 

 

Figure 5. The Neural Network Pattern of the Spacing at the Behavioral Change Point Based on the Follower 

Vehicle Spacing at the Deceleration Wave Reception 

 

According to Fig.6, the increase in the negative value of the deceleration wave speed in the values less 
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follower vehicle will be reduced, which result in the follower driver neglecting the accelerating wave effect. 

Moreover, the follower driver based on the overreaction behavioral patter continues neglect at the positive 

values of the deceleration wave, which lead to the driver's tendency to move at a constant speed and the 

lack of an appropriate drop in speed at the deceleration wave reception. The neglect of the follower driver 

leads to the reduction of the safe spacing on the path toward the congestion phase and a more rapid drop 

in speed and an increase in the safe spacing. A further deceleration on the path will result in an increase in 
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Figure 6. The Neural Network Model of the Spacing at the Behavioral Change Point Based on the Acceleration 

Wave Speed 
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According to Fig.7, the results of the sensitivity analysis of the trajectory data obtained from three 
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less safe spacing. When the follower driver receives the deceleration wave at higher speeds, s/he does not 

pay attention to the effect of the deceleration wave, so that, he is forced to secure a safe spacing at the 

behavioral change point. However, at lower speeds, due to the reduced maneuverability of the follower 

driver in order to drive at a safe spacing, s/he is forced to follow the deceleration wave and try to drop the 

speed and then increase safe spacing at the behavioral change point. 

 

Figure 8. The Neural Network Pattern of the Safe Spacing at the Behavioral Change Point Based on the Follower 

Vehicle Speed at the Deceleration Wave Reception 
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with under reaction reflects the more complexity of the under reaction behavioral pattern due to the high 

maneuverability of driving in a low safe spacing. 

 

Figure 10. The Neural Network Pattern of Spacing at the Behavioral Change Point Based on the Acceleration 

Wave Speed 
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4.2.3.1 The Neural Network Patterns of the Effective Parameters at the Microscopic Level 

As shown in Fig. 12, increasing the follower vehicle speed at the deceleration wave reception leads to 

a decrease in the follower vehicle spacing at the behavioral change point. The neural network pattern of 

the follower driver based on the overreaction-aggressive behavioral pattern is similar to the behavioral 

logic and pattern of the follower driver with the overreaction- timid. 

 

 
Figure 12. The Neural Network Pattern of Spacing at the Behavioral Change Point Based on the Speed of the 

Vehicle at the Deceleration Wave Reception 
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According to Fig. 14, reducing the negative value of the deceleration wave speed to a positive value 

of 10ft/s, coasting phase, leads to decrease the safe spacing at the behavioral change point. The over reaction 

driver in the deceleration phase act based on his/her behavioral pattern and tends to drive in the 

deceleration phase with a high safe spacing. Reducing the deceleration wave intensity leads to reduce the 

impact of deceleration on the follower vehicle driver. Whatever the negative wave is smaller, the drop in 

speed of the follower vehicle will be lower. Reducing the impact of the wave on the follower vehicle will 

continue to a positive value of 10ft/s. 

 

 
 

Figure 14. The Neural Network Pattern of Spacing at the Behavioral Change Point Based on the Deceleration 

Wave Speed 
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change point. Based on the behavioral patterns of under reaction- timid and over reaction-aggressive, the 

results of the trajectory data sensitivity analysis of three parameters at the microscopic level indicate that 

deceleration wave is the most effective parameter on the value of the follower safe spacing at the behavioral 

change point. Based on the behavioral pattern of under reaction- timid, increasing the negative value of the 

deceleration wave leads to the oscillatory changes in the driver safe spacing at the behavioral change point. 

But, based on the overreaction-aggressive, increasing the follower vehicle speed at the deceleration wave 

reception leads to reduce the follower vehicle safe spacing at the behavioral change point. 

 

Table 4. The Stop Time Leading to Congestion 

Behavioral pattern 
The most effective 

parameter 
Parameter behavior 

The reason for the 

behavior of the 

parameter 

Over reaction- timid 

1.The follower vehicle 

speed at the 

deceleration wave 

reception 

2.deceleration wave 

1.Reduction of the 

follower vehicle safe 

spacing at the 

behavioral change 

point 

2.decreasing and then 

increasing the safe 

spacing at the 

behavioral change 

point in the values less 

than -8ft/s 

1.Smoothness of the 

traffic flow 

2.Wave tendency to 

decelerate more in the 

negative values and the 

lower impact on the 

wave on the follower 

vehicle in the positive 

values, which leads to 

the follower driver 

neglecting the impact 

of the deceleration 

wave 

Under reaction- timid Deceleration wave 

Oscillatory changes in 

the driver safe spacing 

at the behavioral 

change point 

An indication of the 

more complexity of the 

under-reaction 

behavioral pattern in 

the low safe spacing 

Over reaction- timid Deceleration wave 

Decreasing and then 

increasing the safe 

spacing at the 

behavioral change 

point in the values less 

than -10ft/s 

Tendency to drive in 

the deceleration phase 

with high safe spacing 
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